Copied to
clipboard

G = S3×C324C8order 432 = 24·33

Direct product of S3 and C324C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×C324C8, C12.67S32, C3310(C2×C8), (S3×C32)⋊4C8, C3215(S3×C8), C337C87C2, (S3×C12).12S3, (C3×C12).182D6, (S3×C6).6Dic3, C6.28(S3×Dic3), D6.2(C3⋊Dic3), (C3×Dic3).6Dic3, (C32×Dic3).6C4, Dic3.2(C3⋊Dic3), (C32×C12).64C22, C33(S3×C3⋊C8), (C3×S3)⋊(C3⋊C8), (S3×C3×C6).5C4, C326(C2×C3⋊C8), C4.22(S3×C3⋊S3), (S3×C3×C12).7C2, C12.37(C2×C3⋊S3), (C3×C6).89(C4×S3), C31(C2×C324C8), C6.1(C2×C3⋊Dic3), C2.1(S3×C3⋊Dic3), (C4×S3).3(C3⋊S3), (C3×C324C8)⋊9C2, (C32×C6).31(C2×C4), (C3×C6).35(C2×Dic3), SmallGroup(432,430)

Series: Derived Chief Lower central Upper central

C1C33 — S3×C324C8
C1C3C32C33C32×C6C32×C12S3×C3×C12 — S3×C324C8
C33 — S3×C324C8
C1C4

Generators and relations for S3×C324C8
 G = < a,b,c,d,e | a3=b2=c3=d3=e8=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 520 in 164 conjugacy classes, 70 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C62, S3×C8, C2×C3⋊C8, S3×C32, C32×C6, C3×C3⋊C8, C324C8, C324C8, S3×C12, C6×C12, C32×Dic3, C32×C12, S3×C3×C6, S3×C3⋊C8, C2×C324C8, C3×C324C8, C337C8, S3×C3×C12, S3×C324C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊S3, C3⋊C8, C4×S3, C2×Dic3, C3⋊Dic3, S32, C2×C3⋊S3, S3×C8, C2×C3⋊C8, C324C8, S3×Dic3, C2×C3⋊Dic3, S3×C3⋊S3, S3×C3⋊C8, C2×C324C8, S3×C3⋊Dic3, S3×C324C8

Smallest permutation representation of S3×C324C8
On 144 points
Generators in S144
(1 120 95)(2 113 96)(3 114 89)(4 115 90)(5 116 91)(6 117 92)(7 118 93)(8 119 94)(9 40 44)(10 33 45)(11 34 46)(12 35 47)(13 36 48)(14 37 41)(15 38 42)(16 39 43)(17 32 55)(18 25 56)(19 26 49)(20 27 50)(21 28 51)(22 29 52)(23 30 53)(24 31 54)(57 110 142)(58 111 143)(59 112 144)(60 105 137)(61 106 138)(62 107 139)(63 108 140)(64 109 141)(65 122 103)(66 123 104)(67 124 97)(68 125 98)(69 126 99)(70 127 100)(71 128 101)(72 121 102)(73 88 131)(74 81 132)(75 82 133)(76 83 134)(77 84 135)(78 85 136)(79 86 129)(80 87 130)
(1 54)(2 55)(3 56)(4 49)(5 50)(6 51)(7 52)(8 53)(9 80)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 96)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 114)(26 115)(27 116)(28 117)(29 118)(30 119)(31 120)(32 113)(33 131)(34 132)(35 133)(36 134)(37 135)(38 136)(39 129)(40 130)(41 84)(42 85)(43 86)(44 87)(45 88)(46 81)(47 82)(48 83)(57 100)(58 101)(59 102)(60 103)(61 104)(62 97)(63 98)(64 99)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)(105 122)(106 123)(107 124)(108 125)(109 126)(110 127)(111 128)(112 121)
(1 125 75)(2 76 126)(3 127 77)(4 78 128)(5 121 79)(6 80 122)(7 123 73)(8 74 124)(9 105 51)(10 52 106)(11 107 53)(12 54 108)(13 109 55)(14 56 110)(15 111 49)(16 50 112)(17 36 141)(18 142 37)(19 38 143)(20 144 39)(21 40 137)(22 138 33)(23 34 139)(24 140 35)(25 57 41)(26 42 58)(27 59 43)(28 44 60)(29 61 45)(30 46 62)(31 63 47)(32 48 64)(65 92 130)(66 131 93)(67 94 132)(68 133 95)(69 96 134)(70 135 89)(71 90 136)(72 129 91)(81 97 119)(82 120 98)(83 99 113)(84 114 100)(85 101 115)(86 116 102)(87 103 117)(88 118 104)
(1 68 82)(2 83 69)(3 70 84)(4 85 71)(5 72 86)(6 87 65)(7 66 88)(8 81 67)(9 60 21)(10 22 61)(11 62 23)(12 24 63)(13 64 17)(14 18 57)(15 58 19)(16 20 59)(25 110 37)(26 38 111)(27 112 39)(28 40 105)(29 106 33)(30 34 107)(31 108 35)(32 36 109)(41 56 142)(42 143 49)(43 50 144)(44 137 51)(45 52 138)(46 139 53)(47 54 140)(48 141 55)(73 93 104)(74 97 94)(75 95 98)(76 99 96)(77 89 100)(78 101 90)(79 91 102)(80 103 92)(113 134 126)(114 127 135)(115 136 128)(116 121 129)(117 130 122)(118 123 131)(119 132 124)(120 125 133)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,120,95)(2,113,96)(3,114,89)(4,115,90)(5,116,91)(6,117,92)(7,118,93)(8,119,94)(9,40,44)(10,33,45)(11,34,46)(12,35,47)(13,36,48)(14,37,41)(15,38,42)(16,39,43)(17,32,55)(18,25,56)(19,26,49)(20,27,50)(21,28,51)(22,29,52)(23,30,53)(24,31,54)(57,110,142)(58,111,143)(59,112,144)(60,105,137)(61,106,138)(62,107,139)(63,108,140)(64,109,141)(65,122,103)(66,123,104)(67,124,97)(68,125,98)(69,126,99)(70,127,100)(71,128,101)(72,121,102)(73,88,131)(74,81,132)(75,82,133)(76,83,134)(77,84,135)(78,85,136)(79,86,129)(80,87,130), (1,54)(2,55)(3,56)(4,49)(5,50)(6,51)(7,52)(8,53)(9,80)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,96)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,114)(26,115)(27,116)(28,117)(29,118)(30,119)(31,120)(32,113)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,129)(40,130)(41,84)(42,85)(43,86)(44,87)(45,88)(46,81)(47,82)(48,83)(57,100)(58,101)(59,102)(60,103)(61,104)(62,97)(63,98)(64,99)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,121), (1,125,75)(2,76,126)(3,127,77)(4,78,128)(5,121,79)(6,80,122)(7,123,73)(8,74,124)(9,105,51)(10,52,106)(11,107,53)(12,54,108)(13,109,55)(14,56,110)(15,111,49)(16,50,112)(17,36,141)(18,142,37)(19,38,143)(20,144,39)(21,40,137)(22,138,33)(23,34,139)(24,140,35)(25,57,41)(26,42,58)(27,59,43)(28,44,60)(29,61,45)(30,46,62)(31,63,47)(32,48,64)(65,92,130)(66,131,93)(67,94,132)(68,133,95)(69,96,134)(70,135,89)(71,90,136)(72,129,91)(81,97,119)(82,120,98)(83,99,113)(84,114,100)(85,101,115)(86,116,102)(87,103,117)(88,118,104), (1,68,82)(2,83,69)(3,70,84)(4,85,71)(5,72,86)(6,87,65)(7,66,88)(8,81,67)(9,60,21)(10,22,61)(11,62,23)(12,24,63)(13,64,17)(14,18,57)(15,58,19)(16,20,59)(25,110,37)(26,38,111)(27,112,39)(28,40,105)(29,106,33)(30,34,107)(31,108,35)(32,36,109)(41,56,142)(42,143,49)(43,50,144)(44,137,51)(45,52,138)(46,139,53)(47,54,140)(48,141,55)(73,93,104)(74,97,94)(75,95,98)(76,99,96)(77,89,100)(78,101,90)(79,91,102)(80,103,92)(113,134,126)(114,127,135)(115,136,128)(116,121,129)(117,130,122)(118,123,131)(119,132,124)(120,125,133), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)>;

G:=Group( (1,120,95)(2,113,96)(3,114,89)(4,115,90)(5,116,91)(6,117,92)(7,118,93)(8,119,94)(9,40,44)(10,33,45)(11,34,46)(12,35,47)(13,36,48)(14,37,41)(15,38,42)(16,39,43)(17,32,55)(18,25,56)(19,26,49)(20,27,50)(21,28,51)(22,29,52)(23,30,53)(24,31,54)(57,110,142)(58,111,143)(59,112,144)(60,105,137)(61,106,138)(62,107,139)(63,108,140)(64,109,141)(65,122,103)(66,123,104)(67,124,97)(68,125,98)(69,126,99)(70,127,100)(71,128,101)(72,121,102)(73,88,131)(74,81,132)(75,82,133)(76,83,134)(77,84,135)(78,85,136)(79,86,129)(80,87,130), (1,54)(2,55)(3,56)(4,49)(5,50)(6,51)(7,52)(8,53)(9,80)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,96)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,114)(26,115)(27,116)(28,117)(29,118)(30,119)(31,120)(32,113)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,129)(40,130)(41,84)(42,85)(43,86)(44,87)(45,88)(46,81)(47,82)(48,83)(57,100)(58,101)(59,102)(60,103)(61,104)(62,97)(63,98)(64,99)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,121), (1,125,75)(2,76,126)(3,127,77)(4,78,128)(5,121,79)(6,80,122)(7,123,73)(8,74,124)(9,105,51)(10,52,106)(11,107,53)(12,54,108)(13,109,55)(14,56,110)(15,111,49)(16,50,112)(17,36,141)(18,142,37)(19,38,143)(20,144,39)(21,40,137)(22,138,33)(23,34,139)(24,140,35)(25,57,41)(26,42,58)(27,59,43)(28,44,60)(29,61,45)(30,46,62)(31,63,47)(32,48,64)(65,92,130)(66,131,93)(67,94,132)(68,133,95)(69,96,134)(70,135,89)(71,90,136)(72,129,91)(81,97,119)(82,120,98)(83,99,113)(84,114,100)(85,101,115)(86,116,102)(87,103,117)(88,118,104), (1,68,82)(2,83,69)(3,70,84)(4,85,71)(5,72,86)(6,87,65)(7,66,88)(8,81,67)(9,60,21)(10,22,61)(11,62,23)(12,24,63)(13,64,17)(14,18,57)(15,58,19)(16,20,59)(25,110,37)(26,38,111)(27,112,39)(28,40,105)(29,106,33)(30,34,107)(31,108,35)(32,36,109)(41,56,142)(42,143,49)(43,50,144)(44,137,51)(45,52,138)(46,139,53)(47,54,140)(48,141,55)(73,93,104)(74,97,94)(75,95,98)(76,99,96)(77,89,100)(78,101,90)(79,91,102)(80,103,92)(113,134,126)(114,127,135)(115,136,128)(116,121,129)(117,130,122)(118,123,131)(119,132,124)(120,125,133), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,120,95),(2,113,96),(3,114,89),(4,115,90),(5,116,91),(6,117,92),(7,118,93),(8,119,94),(9,40,44),(10,33,45),(11,34,46),(12,35,47),(13,36,48),(14,37,41),(15,38,42),(16,39,43),(17,32,55),(18,25,56),(19,26,49),(20,27,50),(21,28,51),(22,29,52),(23,30,53),(24,31,54),(57,110,142),(58,111,143),(59,112,144),(60,105,137),(61,106,138),(62,107,139),(63,108,140),(64,109,141),(65,122,103),(66,123,104),(67,124,97),(68,125,98),(69,126,99),(70,127,100),(71,128,101),(72,121,102),(73,88,131),(74,81,132),(75,82,133),(76,83,134),(77,84,135),(78,85,136),(79,86,129),(80,87,130)], [(1,54),(2,55),(3,56),(4,49),(5,50),(6,51),(7,52),(8,53),(9,80),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,96),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,114),(26,115),(27,116),(28,117),(29,118),(30,119),(31,120),(32,113),(33,131),(34,132),(35,133),(36,134),(37,135),(38,136),(39,129),(40,130),(41,84),(42,85),(43,86),(44,87),(45,88),(46,81),(47,82),(48,83),(57,100),(58,101),(59,102),(60,103),(61,104),(62,97),(63,98),(64,99),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144),(105,122),(106,123),(107,124),(108,125),(109,126),(110,127),(111,128),(112,121)], [(1,125,75),(2,76,126),(3,127,77),(4,78,128),(5,121,79),(6,80,122),(7,123,73),(8,74,124),(9,105,51),(10,52,106),(11,107,53),(12,54,108),(13,109,55),(14,56,110),(15,111,49),(16,50,112),(17,36,141),(18,142,37),(19,38,143),(20,144,39),(21,40,137),(22,138,33),(23,34,139),(24,140,35),(25,57,41),(26,42,58),(27,59,43),(28,44,60),(29,61,45),(30,46,62),(31,63,47),(32,48,64),(65,92,130),(66,131,93),(67,94,132),(68,133,95),(69,96,134),(70,135,89),(71,90,136),(72,129,91),(81,97,119),(82,120,98),(83,99,113),(84,114,100),(85,101,115),(86,116,102),(87,103,117),(88,118,104)], [(1,68,82),(2,83,69),(3,70,84),(4,85,71),(5,72,86),(6,87,65),(7,66,88),(8,81,67),(9,60,21),(10,22,61),(11,62,23),(12,24,63),(13,64,17),(14,18,57),(15,58,19),(16,20,59),(25,110,37),(26,38,111),(27,112,39),(28,40,105),(29,106,33),(30,34,107),(31,108,35),(32,36,109),(41,56,142),(42,143,49),(43,50,144),(44,137,51),(45,52,138),(46,139,53),(47,54,140),(48,141,55),(73,93,104),(74,97,94),(75,95,98),(76,99,96),(77,89,100),(78,101,90),(79,91,102),(80,103,92),(113,134,126),(114,127,135),(115,136,128),(116,121,129),(117,130,122),(118,123,131),(119,132,124),(120,125,133)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)]])

72 conjugacy classes

class 1 2A2B2C3A···3E3F3G3H3I4A4B4C4D6A···6E6F6G6H6I6J···6Q8A8B8C8D8E8F8G8H12A···12J12K···12R12S···12Z24A24B24C24D
order12223···3333344446···666666···68888888812···1212···1212···1224242424
size11332···2444411332···244446···69999272727272···24···46···618181818

72 irreducible representations

dim111111122222222444
type++++++-+-+-
imageC1C2C2C2C4C4C8S3S3Dic3D6Dic3C3⋊C8C4×S3S3×C8S32S3×Dic3S3×C3⋊C8
kernelS3×C324C8C3×C324C8C337C8S3×C3×C12C32×Dic3S3×C3×C6S3×C32C324C8S3×C12C3×Dic3C3×C12S3×C6C3×S3C3×C6C32C12C6C3
# reps1111228144541624448

Matrix representation of S3×C324C8 in GL6(𝔽73)

100000
010000
001000
000100
0000721
0000720
,
7200000
0720000
001000
000100
000001
000010
,
7210000
7200000
0007200
0017200
000010
000001
,
7210000
7200000
001000
000100
000010
000001
,
44540000
25290000
0005100
0051000
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[44,25,0,0,0,0,54,29,0,0,0,0,0,0,0,51,0,0,0,0,51,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S3×C324C8 in GAP, Magma, Sage, TeX

S_3\times C_3^2\rtimes_4C_8
% in TeX

G:=Group("S3xC3^2:4C8");
// GroupNames label

G:=SmallGroup(432,430);
// by ID

G=gap.SmallGroup(432,430);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,36,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^3=d^3=e^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽